MSWIL location

MS Wil B.V.
Bosscheweg 60A
5735GW Aarle-Rixtel
the Netherlands

P: +31492745710       
F: +31492745719      
E: This email address is being protected from spambots. You need JavaScript enabled to view it.

LinkedIn

Charged Particle Optics Software (CPO) is a high-end software application which calculates electrostatic/magnetic fields and the trajectories of charged particles through those fields.

See the Simion-CPO site for more information.

CPO provides accurate calculations of space charge and space-charge limited cathode emissions, highly accurate field calculations via the Boundary Element Method (BEM), a vast number of examples, and various added benefits such as direct calculation of aberration coefficients, dielectrics, magnetic fields from wire currents, and built-in autofocusing routines.

  • Extremely accurate BEM methods proven with over 200 benchmark and other tests. See examples and publications.
  • Help system that is exceptionally clear, comprehensive and supported with examples
  • Developed continuously since 1974 by one of the leading research group in electrostatic systems (University of Manchester, UK).
  • Vast range of capabilities and options, with advanced underlying algorithms, all at a competitive price for a high-end package.

Electrostatic field solving is done to high accuracy using the Boundary Element Method (BEM) rather than traditional FEM or FDM methods. The BEM has unique advantages and is well-suited to space-charge, cathode problems and nano-structures in the presence of large electrodes. Adaptive surface meshes get smaller where accuracy is critical. The BEM even easily simulates fine meshes and non-enclosed systems. Low-frequency oscillations, such as in a quadrupole, may also be simulated.

Particle trajectories of charged particles are calculated (Bulirsch-Stoer), accurately accounting for space-charge and relativistic effects. Space-charge is handled with iterative convergence tube and mesh methods--accuracy of 1% against theoretical results have been obtained.

Cathode emissions limited by space charge are simulated, including thermionic, field and extended Schottky emissions. Supports Child's Law/Langmuir, Fowler-Nordheim and Richardson-Dushman relationships, plus user-defined properties. CPO specially handles space-charge effects at the critical cathode region.

Secondary emissions can be generated when a particle hits an electrode. The current multiplication factor and energy/angular distributions of the secondaries are chosen by the user.

Particle scattering and losses due to grid, background gas or secondary emissions are given in the examples included in the scattering version of CPO. Particle-particle scattering inside the beam is possible with the stochastic version. User-defined routines can be written in C++.

Magnetic countour lines on a solenoid coilcolor magnetic field map on a solenoid coil Magnetic elements of various types such as solenoids, wire loops and user-defined fields are avilable. Various contour and field plots can be displayed.

Aberration coefficients and lens properties may be calculated directly. An iterative automatic focusing option can find optimum electrode voltages.